Factorial designs

What if you wanted to test...

- Whether FOXP2 knockout mice vs. regular mice show differential _______ in motor learning tasks vs. _________ learning tasks
- Multiple _______
 - KO and regular: motor task
 - KO and regular: _________ task
- Or put it all into a _________

What if you wanted to test...

- Whether driving in _________ conditions is more impaired by visual or auditory _________
 - Multiple experiments
 - Driving in _________: Vis and Aud
 - Driving in _________: Vis and Aud
 - _________: easy driving, hard driving
 - _________: easy driving, hard driving
- Or put it all into a _________

What if you wanted to test...

- Do French speakers and English speakers show different _________ in speech?
 - Speech discrimination: French _________; Eng. _________
- Multiple _________
 - French on French and English sounds
 - English on French and English sounds
- Or put it all into a _________
Simple factorial design: 2 ________

• *Two independent variables* or _________
• Testing multiple hypotheses
 – *Main effects*:
 – IV 1 effect (H₀: _________)
 – IV 2 effect (H₀: _________)
 – *Interaction*:
 – IV 1 x IV 2: effects of IV1 are _________ depending on ____________ (or vice versa)
 – H₀: __________

FOXP2 knockout and learning

<table>
<thead>
<tr>
<th>Task type</th>
<th>150</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor learning</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Olfactory learning</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Regular or KO</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

Marginal means show you the main effects

Simple factorial design: 2 factors

• *Two independent variables* or _________
• Testing multiple hypotheses
 – *Main effects*:
 – Task difficulty: _________
 – Regular vs. KO mice: probably _________ worse
 – *Interaction*:
 – _________: motor learning shows *bigger impairment* than _________ for KO mice

Simple factorial design: 2 factors

• *Two independent variables* or _________
• Testing multiple hypotheses
 – *Main effects*:
 – Driving conditions: _________ increase errors
 – Task type: _________ increases errors (vs. aud)
 – *Interaction*:
 – _________: visual task increases errors _________ when driving conditions are difficult
Driving and visual/auditory distraction

<table>
<thead>
<tr>
<th>Distraction type</th>
<th>Auditory</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy driving</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>Hard driving</td>
<td>790</td>
<td></td>
</tr>
</tbody>
</table>

Driving conditions

<table>
<thead>
<tr>
<th></th>
<th>Easy driving</th>
<th>Hard driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>570</td>
<td>705</td>
<td></td>
</tr>
</tbody>
</table>

Braking reaction time (ms)

<table>
<thead>
<tr>
<th>Distraction is</th>
<th>Auditory</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>590</td>
<td>685</td>
<td></td>
</tr>
</tbody>
</table>

Simple factorial design: 2 factors

- Two independent variables or _________
- Testing multiple hypotheses
 - Main effects:
 - Language background: _________
 - Speech sound language: _________
 - Interaction:
 - LB x SSL: French speakers better at _________, English better at _________

French vs. English sounds

<table>
<thead>
<tr>
<th>Sound type:</th>
<th>French sounds</th>
<th>English sounds</th>
<th>Listeners' language</th>
</tr>
</thead>
<tbody>
<tr>
<td>French ppts.</td>
<td>50</td>
<td>94</td>
<td>72</td>
</tr>
<tr>
<td>English ppts.</td>
<td>95</td>
<td></td>
<td>72</td>
</tr>
</tbody>
</table>

Sound type: 72.5 71.5

Main effects and interactions

- Sometimes you’re looking for _________.
- Sometimes you’re looking for _________.
- Sometimes you’re looking for _________.
What if you have both main effect(s) and interactions?

- Sometimes you want an ________!
- Or not.

What kinds of factors?

- Totally between-groups
- Totally __________
 - (Distracted driving example)

- _______ design (AKA split-plot design)
 - _______ is within-subjects
 - _______ is between-groups
 - (Both the FOXP2 mouse example and the English/French speech perception example are _________)
Higher-order designs

• All of the examples we have considered are “________” or “2×2” designs.
 – Analyze with a 2-way Analysis of Variance (_______)
• If one factor has _________, it’s a 2×3.
 – Analyze with a 2-way Analysis of Variance (_______)
• If there are _________, could be a 2×2×2.
 – Analyze with a 3-way Analysis of Variance (_______)

How many factors?

• You can use lots and lots, but gets harder and harder to ________
• As few factors as you can use and still ______

• Why? Levels of _________:
 – The boy moved to Germany
 – The boy _________moved to Germany
 – The boy ________________moved to Germany

How many factors?

• As few as you can use and still draw ________
• Sometimes, some of your IVs are just controls or _________ (you don’t want to see effect)
• Sometimes, you really do want to see a 3-way interaction!
 – *(Also depends on how you code your
 ________________)
• Typical n00b error is to ___________________________________