Attention

What do we need it for?

- **Processing** limitations
 - Finding friend at airport
 - Finite processing resources @ given time
- **Motor** limitations
 - Can only move in one direction
 - Pick up finite # of things
 - One word at a time (unless you have 2 heads)

Functions of attention

- **Focusing**
- Perceptual enhancement
- Binding
- Sustaining behavior
- Action selection (central executive)

1. Focusing

- Where’s the cutoff for selecting a subset of information?
- What’s a “channel”? (What can attention be allocated to?)
I’m going to show you some letters, and then ask you to report them back.

A F G M
Q R Z P
C N T D

Write them down!

1. Focusing

• Span of apprehension: max 4-5 letters
• Where’s the limit?
 – Unable to perceive +5 letters at a time
 – OR,
 – can perceive but memory fades during report
• Sperling (1960)
 – Full report vs. partial report
1. Focusing

- Sperling (1960)
 - 3 x 4 array of letters
 - Full report: 4-5 letters from whole array
 - Partial report:
 - Display flashes
 - Then, tone to indicate row (1, 2, 3)
 - Result: 3.3 letters per row * # of rows
 - Iconic (sensory) memory is high-capacity
 - Limitation must be higher up

- Channel selection (note IP term)
 - At what point do you pick some info to process in more depth?
 - E.g. listening to a conversation
 - Some things don’t get tuned out
 - Extreme stuff (redirect attention)
 - Relevant stuff (hmm…)
 - Want to focus on/fully process important stuff, but keep an ear out for relevant stimuli

- Dichotic listening
 - Hear two ‘channels’, one per ear
 - Follow only one (shadow to ensure attn)
 - Test for material in attended/unattended
 - To what degree is unattended info processed?

- Cherry (1953): voice & its attributes, but no content
- Moray (1959)
 - Attended message, unattended word list (<=35)
 - No recognition of word lists!
- No shadowing, just report digits
 - L: 1, 4, 2
 - R: 6, 9, 3
 - Report each channel (142/693), not interleaved
1. Focusing

- What's a channel?
 - Ear?
 - Location in space? (visual, auditory)
 - Object?
 - Location in time?

1. Focusing

- Attention to objects
 - “Spotlight” metaphor; multiple spotlights??
 - Multiple Object Tracking (MOT) task
 - Storm & Pylyshyn, 1988
 - Cavanagh & Alvarez, TICS 2005--v. readable
 - http://research.yale.edu/perception/oba/MOT.mov
 - http://research.yale.edu/perception/oba/MOT-RB-dumbbells.mov

1. Focusing

- What's a channel?
 - Kahneman, Treisman, & Gibbs (1992): objects

<table>
<thead>
<tr>
<th>Name the letter</th>
<th>Faster</th>
</tr>
</thead>
<tbody>
<tr>
<td>same</td>
<td></td>
</tr>
<tr>
<td>different</td>
<td>Slower</td>
</tr>
<tr>
<td>no match</td>
<td>Slower</td>
</tr>
</tbody>
</table>

So objects can be ‘channels’

1. Focusing

- M. R. Jones et al. (2002):
 - Tone sequence
 - A X X X X X B
 - Compare pitch of B to A
 - On-beat B more accurate than off-beat B
 - Focal attending to location in time!

Point on stopwatch is a channel
1. Focusing

- Auditory attention (Bregman, 1990)
 - Stream segregation
 - Can focus on auditory ‘streams’

2. Perceptual enhancement

- “Paying attention” to better process
 - Like turning up the volume
- Signal in noise (again, IP terms)
 - External noise
 - Internal noise (variability in neurons)
- Lu & Dosher (1998)
 - Does attending to location help?
 - Only when low external noise
 - This looks like turning up external
- Internal noise reduction may help

Where do the limits of attention occur?

- Bottleneck theories
 - Somewhere in the system, there’s a ‘cutoff’
- Capacity theories
 - You can only devote limited resources to so much stuff but no cutoff point

Where are limits located?

- Broadbent (1958) Filter model
Where are limits located?

容许范围位于何处？

- 感知输入
- 物理属性的分析
- 典型处理
- 意义的分析
- 对象和句子的编译

Where’s the “bottleneck”?

- 后期选择
- 早期选择
- 过滤模型与优先级
 - 永久优先级
 - 当前优先级
 - Moray 1959 结果
 - Liberty/Death 示例

- 德国与德国 (1963)，诺曼 (1968): 无注意力极限，极限在短期记忆

Capacity theories

- 无瓶颈: 有限资源
- 可以“花费”所需
- 变异: 多个资源理论
- Pashler (1998):
 - 或许瓶颈与每个模态的容量分配
 - 可以同时处理视觉对象，听觉对象

Functions of attention

- 重点
- 感知增强
- 绑定
- 维持行为
- 动作选择（中央执行）
3. Binding

- Treisman & Gelade (1980): Feature Integration Theory
- Attention may link visual attributes processed in different brain areas
- Evidence: visual search
 - Single feature (green)
 - Don't need to bind, fast search
 - Feature conjunction (green + circle)
 - Must "move attention around" the array

3. Binding

- Evidence for role of attention in binding:
 - Visual search
 - Slower if conjunction search
 - Also, T&G found that conjunction searches at chance w/o location info
 - Illusory conjunctions
 - Snyder (1972)
 - See TN
 - Report T
3. Binding

4. Sustaining behavior

- ADHD and attention
 - Ceci & Tishman (1984)
 - ADHD vs nonADHD kids
 - NonADHD learned materials better
 - ADHD learned distracting stuff better
 - Not intellect: problem is sustaining behavior
 - Additional consideration: switch cost

Automaticity

- Practice makes task less demanding
 - Uses less capacity
- What kind of practice reduces capacity?
 - Consistent vs. varied mapping
 - Consistent: B is always target, Q distractor
 - Varied: B, Q each can be either

Automaticity

- Consistent vs. varied: Schneider & Shiffrin (1977)
 - Memory set: J, D, K, M, J
 - One trial
 - With consistent mappings, looked like parallel search
Automaticity

- Shiffrin & Schneider (1977)
- Is automaticity cost-free? NO
- After consistent training, use old target as a distractor: **22% drop** in detection of real target
- Stroop task: the automatic response isn’t the correct one
 - Dyslexic & ADHD children—apparently worse
 - Issue of executive control?

Automaticity

- Or Not-omaticity?
- Hirst et al. (1980)
 - Read while dictating sentences
 - No consistent mapping, so no automaticity
 - Nonetheless could write & comprehend
 - Pashler (1998): people are getting better at capacity sharing

Automaticity

- Logan: **instance theory** of automaticity
 - Do effortfully vs. retrieve from memory
 - 39 * 39; driving to friend’s house

Automaticity

- Logan: **instance theory** of automaticity
 - A “race” model (these are everywhere!)
 - After you’ve done it effortfully so many times, it’s faster just to retrieve the answer
 - But what’s an *instance*?
Automaticity

- The Stroop effect
- You read words automatically
- But you don’t name colors automatically
- Naming the font color when you’re trying to suppress reading the word itself is hard!
 - When the font color mismatches the word
 - Easy when the font color matches the word

5. The central executive

- (= action selection)
- Picks what you’re going to do
- Ability to shift attention
- “Cognitive control”
- Pashler: a true central bottleneck is response selection
 - PRP task

5. The central executive

- Psychological Refractory Period
 - Task A: L hand--respond high or low tone
 - Task B: R hand--respond letter X or C
- Some stuff can happen without “fighting for resources,” but planning a response requires executive control
5. The central executive

• Psychological Refractory Period

Stim A process → PLAN → respond
Stim B process → PLAN → respond

Task A hard

Stim A process → PLAN → respond
Stim B process → longer delay in B → PLAN → respond

Task B hard

Stim A process → PLAN → respond
Stim B process → longer delay in B → PLAN → respond

5. The central executive

• Why this bottleneck?
 – Avoid interference (pat head, rub stomach)
 – Pick an action
 – Revise an action

Bottlenecks on the road

• Things you do while driving
 – Talk to passengers
 – Listen to radio/sing along
 – Eat
 – Dial phone
 – Talk on phone
 • Handheld
 • Hands-free

Bottlenecks on the road

• Strayer & Johnston (2001)
 – Radio, book on tape OK
 – Shadowing via cell OK
 – …EXCEPT word-generation variant
 – Unconstrained conversation (±hands) bad
 • 2x increase in missing traffic signals!
 – S&J: cell “divert[s] attention to an engaging cognitive context
other than the one immediately associated with driving.”
Bottlenecks on the road

 - PRP paradigm
 - Braking (single-response, well-practiced)
 - A/V identification with A/V response (2AFC)
 - Modality independence? No
 - (Maybe auditory will interfere less)
 - Strongest delay was at shortest IOI
 - Regardless of modality, braking was delayed

More on visual attention

Chun, 2000

Visual search

- It’s everywhere.
 - Driving.
 - Walking around pedestrians.
 - Cupboard, fridge.
 - Desk. Room. Closet.
- It’s usually serial.
 - No pop-out benefits.
 - Does serial search ever get better?

Visual search: class data

- Feature, target present
- Feature, target absent
- Conjunction, target present
- Conjunction, target absent
Serial search

- Effortful
- Requires focused attention
- Speed scales with # of distractors
 – ≈ complexity of visual scene
- What would help?
 – Learning contingencies of environment
Making serial search easier

• Practice.
 – But remember consistent vs. varied mapping—not automatic unless targets are consistent
 – What counts as consistency?

Layout familiarity

• Distractor sets
 – Repeated layouts
 • Cued target position
 • Didn’t cue target identity (left-T or right-T)
 – New, random layouts
 • Did not cue target position
 • Target positions restricted to subset (like repeated layouts)
Layout familiarity

- Repeated & new layouts
 - Get better at task overall
- Repeated layout
 - Additional speed-up in performance
 - Not just knowing likely target locations

- Most interesting: people couldn’t pick out repeated vs. new layouts!
 - Implicit learning

Object cooccurrence

- Display of unfamiliar objects
- Find the vertically symmetric object
- Again, old (repeated) and new displays
 - Old: same sets of objects in different arrangement
 - New: target appears with randomly selected set of objects
Object cooccurrence

- Faster for cooccurring than random
 - Even though random spatial layout
 - Even though distractor sets equally familiar
- Again, overall improvement
- Again, can’t explicitly distinguish old from new
Path familiarity

- Moving T among moving L’s
- L-movement
 - Recurring
 - Random
- Familiar trajectories aided target ID
- Good skill for team sports

Brains

- The hippocampus
 - Contextual learning
 - Relational/configural processing
 - Spatial navigation
 - Amnesics with damaged hippocampi
 - Get better at Chun’s visual search task
 - But don’t benefit from repeated layouts

Speeding up serial search

- Familiar layout
- Familiar object set
- Familiar movement directions
- Dependent on (implicit) memory

Attentional blink

- Related to bottleneck
 - Task 1: press button to red letter
 - Task 2: did X appear after red letter?
- Really fast
- Vary delay between red letter & X
- How long to ‘recover’?
Did you see an X?

Learning attention?

• Green & Bavelier (2003), *Nature*
 – Tested action video game players (VGPs) on visual attention tasks
 – Tasks:
 • Peripheral attention task
 • Attentional blink

Learning attention?

• Green & Bavelier (2003), *Nature*
 – Peripheral attention task
 • VGPs better than non-VGPs
 • Even far outside the video game field of view!

Learning attention?

• Green & Bavelier (2003), *Nature*
 – Attentional blink
 • Got shorter
Learning attention?

• Green & Bavelier (2003), *Nature*
 – Effects held with ±trained non-VGPs
 – Experience drastically alters attention
 • Plasticity
 – Generalizes outside the ‘training area’
 – Why? How?
 • Forcing attention to multiple objects
 • Highly motivating context?

• Bavelier, Neville & colleagues
 – Deaf participants show better peripheral attention than hearing
 – *Not* true for bilingual (signed & spoken) hearing participants
 – Effect of experience?
 • Not exposure to signed languages
 • Perhaps *sensory* exposure to sight-only