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and composition of the metal ions of the
A-cluster. The presence of copper in the
CODH/ACS complex eluded investigators
previously, although it was reported in the
early characterization of the CODH/ACS
complex from a methanogenic archaebac-
teria (12).

The presence of copper is surprising
given its very low solubility under anaero-
bic conditions in the presence of sulfide.
Although there are a number of examples
of copper-containing proteins, the pres-
ence of copper in this complex enzyme
represents a new role for the metal in bio-
logical systems. The occurrence of both
copper and nickel at a single active site

has not been reported previously and may
reflect the complexity of the biochemical
reaction of acetyl-CoA condensation and
disassembly.

CODH/ACS is believed to be an an-
cient enzyme. The ACS reaction has been
considered as the primordial initiation re-
action for a chemoautotrophic origin of
life (13). Recent experiments aimed at
mimicking prebiotic conditions indicate
that activated acetate can be generated
from CO2 in the presence of a slurry con-
taining NiS and FeS. A role for copper in
these prebiotic scenarios for the synthesis
of activated acetate will without doubt be
the subject of future studies.
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L
anguages exhibit statistical struc-
ture—that is, they show inhomo-
geneities in the distribution of sounds,

words, and phrases. The importance of this
type of structure in learning a language is
a matter of intense debate, and is tackled
by Peña et al. (1) on page 604 of this issue.
The debate originated with Chomsky’s
1957 discussion of the sentence “Colorless
green ideas sleep furiously” (2). This sen-
tence can be immediately recognized as
being well formed (compared to “Ideas
colorless sleep furiously green”) even
though in both cases the probability that
these words have previously occurred in
this order is close to zero. Chomsky con-
cluded that the statistical properties of lan-
guage are not central to the characteriza-
tion of linguistic knowledge, an insight
that became part of the foundation of mod-
ern linguistic theory. Whether statistical
properties are important in language ac-
quisition was largely set aside. Instead, re-
search focused on how the child converges
on the rules and other components of
grammar using a combination of deductive
(nonstatistical) reasoning and innate
knowledge (3).

Recently, there has been a resurgence of
interest in statistical learning, with evidence
showing that infants and young children in-
corporate statistical cues when learning
about the sounds of a language, vocabulary,
and the structures in which words occur
(4–6). These findings complement evidence

from adults demonstrating the use of statis-
tical information in comprehending and
producing utterances, suggesting that simi-
lar mechanisms may underlie the learning
and use of language (7, 8).

Although this research establishes that
statistical information is used in language
acquisition, the extent to which acquisition
can be explained in these terms is not yet
known. Peña et al. (1) suggest one possibili-
ty: Perhaps there are both statistical pro-
cesses (based on frequency and distribution
of elements in language) and grammatical
processes (for example, learning and using
rules). Statistical learning may be limited to
simpler problems such as learning the
sounds of a language and building a lexi-
con. In contrast, the complexities of gram-
mar may require other nonstatistical proce-
dures. Thus, it seems that learning grammar
begins where statistical learning ends. 

This reconcilist view is appealing be-
cause it preserves the main tenets of the
grammar approach while apparently accom-
modating evidence about statistical learn-
ing. In practice, however, it turns out to be
difficult to establish a boundary between
“grammatical” and “statistical” learning.
Any corpus of linguistic stimuli contains a
vast array of cues and potential generaliza-
tions. Even in carefully designed experi-
ments, conditions intended to isolate gram-
matical processes may introduce correlated
statistical cues that would support perfor-
mance. For example, in the Peña et al.
study, adults listened to a continuous stream
of nonsense words (see the table). Accord-
ing to the authors, the subjects could extract
statistical regularities from the speech

stream, but they could formulate rules only
when brief pauses were added at word
boundaries. Although the language supplied
to subjects by Peña et al. consisted of only
nine words, the corpus derived by concate-
nating these words afforded a large number
of generalizations about the syllable se-
quences (some of which are shown in the
table). Peña et al.’s conclusions about gram-
matical learning concentrated on some
properties of the syllable sequences, but
other properties could also have cued sub-
jects’ responses. 

Two previous attempts to isolate a dis-
tinct grammatical form of learning (9, 10)
raised similar concerns. In each case sub-
sequent analyses suggested that the behav-
ior could instead have arisen from statisti-
cal regularities that occurred simultane-
ously with the grammatical patterns
(11–13). Importantly, these additional
findings (like the analysis presented  in
the table) do not show that grammatical
learning does not exist, but rather that sta-
tistical learning could also account for the
results. Such findings also illustrate the
difficulty of working back from observed
behavior to the underlying regularities that
gave rise to it (14). Knowing how many
distinct procedures are involved in learn-
ing a language is a critical issue; resolving
it will require advances on both the “sta-
tistical” and “grammatical” fronts. 

Discussions of statistical learning need
to consider two questions illustrated by
the “colorless” sentence. First, what kinds
of statistics are people, particularly in-
fants, capable of computing? As in the
“colorless” example, most research has in-
vestigated the transition probabilities be-
tween words or syllables. The Peña et al.
study is a welcome step forward insofar as
it addresses questions concerning nonad-
jacent elements (15). Adult learners can
track various types of statistics, including
some second-order probabilities and long-
distance dependencies (14, 16), but the

P E R S P E C T I V E S : N E U R O S C I E N C E

Does Grammar Start

Where Statistics Stop?
Mark S. Seidenberg, Maryellen C. MacDonald, Jenny R. Saffran

The authors are in the Department of Psychology,
University of Wisconsin, Madison, WI 53706, USA. E-
mail: marks@lcnl.wisc.edu

on
 M

ar
ch

 2
8,

 2
01

6
D

ow
nl

oa
de

d 
fr

om
 o

n 
M

ar
ch

 2
8,

 2
01

6
D

ow
nl

oa
de

d 
fr

om
 



65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30

18 OCTOBER 2002 VOL 298 SCIENCE www.sciencemag.org554

limits on these capacities and whether in-
fants have similar capacities have not been
determined. It is also unclear how well
such learning mechanisms fit the demands
posed by human languages. However, re-
cent results suggest that statistical patterns
that occur in natural languages are ac-
quired more readily than patterns not
found in natural languages (16–18). Thus,
constraints on learning may play a positive
role in explaining why language learners
acquire only some of the many generaliza-
tions afforded by natural language. 

The second question asks: Over what
types of information are statistics learned?
Chomsky’s example assumes that people
are computing statistics at a single level of
linguistic structure—between words in the
“colorless” example, and between syllables
in the Peña et al. study. But language ex-
hibits structure at multiple levels, each of
which has its own statistical character. The
“colorless” sentence is less puzzling when
one looks beyond transition probabilities to

other information that is used in compre-
hension. For example, words fall into gen-
eral types—green is a property or adjective,
and sleep is an action or verb—that exhibit
characteristic distributions. The “colorless”
sentence conforms to these distributions in
English, whereas “Ideas colorless sleep fu-
riously green” does not  (19). 

Our understanding of the contribution
of statistical learning is limited by incom-
plete knowledge of the kinds of statistics
infants encode and whether these are the
ones relevant to natural language. This
view also leaves open the critical question
of why only humans acquire language, as
many other species are capable of simple
forms of statistical learning. Again, there
are parallel statistical and grammatical in-
terpretations to explain this fact. For exam-
ple, the statistics of natural language,
which involve correlations over multiple
types of information simultaneously, may
be too complex for other species to learn;
alternatively, other species may lack innate

grammatical capacities that make language
learning possible.

Studies centered on understanding rule
learning raise two major unresolved is-
sues. First, the distinction between a rule
and a statistical generalization remains un-
clear. Many of the regularities summarized
in the table could be called either rules or
statistics. Second, how do infants actually
find rules in the speech they hear? Is there
a procedure that would yield the right rules
under realistic learning conditions? The
evidence for rule learning is mostly nega-
tive: cases where learning occurs but there
is no obvious statistical explanation. A the-
ory explaining how rule learners arrive at
exactly the correct generalizations given
the complexities of their experience would
represent substantial progress.

The cascade of potential learning cues
and generalizations implicit in the minia-
ture language studied by Peña et al. un-
derscores the difficulties in determining
how learners acquire the vastly richer
structure of natural languages. To some
extent this problem may be solved by
grammar-specific forms of knowledge or
learning. Statistical learning offers anoth-
er potential explanation insofar as lan-
guages may exhibit only those structures
that learners are able to track. Thus, the
structure of language may have resulted in
part from constraints imposed by the lim-
its of human learning.
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RULES OR STATISTICS IN LANGUAGE LEARNING?

A Familiarization stream

 . . . PURAKIBELIGATAFODUPUFOKITALIDUBERAGATARADUPULIKIBEFOGA . . .

B Generalizations Probability

 1. Words have PU–KI, BE–GA, TA–DU structure  1.0
  (Peña et al.'s rule, AXC)
 2. Initial syllables begin with a stop consonant 1.0
 3. Final syllables begin with a stop consonant 1.0
 4. Continuant consonants occur word medially 1.0
 5. PU predicts RA 0.33
 6. PU is not followed by BE 1.0
 7. KI predicts BE 0.5
 8. PURA predicts KI 1.0
 9. RAKI predicts BE 0.5
 10. PUBE is not followed by KI 1.0

C   Experiment 1 forced choice

   Choice supported by Percentage chosen
Word PURAKI 1 (rule), 2, 3, 4, 5, 8 73.3
Part-word  RAKIBE 3, 7, 9 26.7

D Experiment 2 forced choice
   Choice supported by Percentage chosen

Rule-word PUBEKI 1 (rule), 2, 3, 4, 8 49.8
Part-word  RAKIBE 3, 6, 7, 9, 10 49.2

(A) A section of the speech stream from the Peña et al. study (1). The three word families are illus-

trated in different colors. (B) Ten of the generalizations available from the input in panel A, with

their probabilities of occurrence in the familiarization stream. (C) The forced choice alternatives in

Peña et al.’s experiment 1. The word alternative is favored over the part-word (a sequence that

spans a word boundary) by Peña et al.’s AXC rule (syllable A, followed by syllable C, with an inter-

vening syllable X) as well as by more of the generalizations from panel B. (D) The forced choice al-

ternatives in experiment 2. The rule-word (a new word generated by the AXC rule) and part-word

alternatives were chosen equally often. In subsequent studies, introduction of brief pauses be-

tween words in the familiarization phase increased choice of rule-words over part-words, because,

according to Peña et al., the pauses switched subjects into a rule-learning mode. The pauses also

simplify the word-segmentation task, increase the salience of properties 2-4, and make the part-

words less like the familiarization words.
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