Representing space

What we see

• Two dimensions
• Monocular depth cues
• Binocular depth cues

What we “see”

• 3D structure
• Not exactly like what we see at a given instant
• Visual imagery?
• Something more succinct?

Possible types of representations

• Analog
 – Preserves properties of thing it represents
 – (Thing it represents: the “referent”)
 – “To scale”
 – Often, idea is that representation duplicates the perceptual experience itself

Possible types of representations

• Propositions
 – A is north of B
 – B is south of C
 – Modality-independent
 • Not visual or spatial
 • Could also represent “A is a nice city to visit”
Propositional representations

• More parsimonious: A-centered
 – C is 6 mi east of A
 – B is 4 mi south of A

• Less parsimonious (but more direct):
 – A is 6 mi W of C
 – C is 6 mi E of A
 – A is 4 mi N of B
 – B is 4 mi S of A
 – B is 45, 6W of C
 – C is 4N, 6E of B

• What if we add new city D?

Propositional representations

• More parsimonious: A-centered
 – C is 6 mi east of A
 – B is 4 mi south of A
 – D is 6 mi east and 4 mi S of A

• Less parsimonious (but more direct):
 – A is 6 mi W of C
 – C is 6 mi E of A
 – A is 4 mi N of B
 – B is 4 mi S of A
 – B is 45, 6W of C
 – C is 4N, 6E of B

Maps & Navigation

• Survey knowledge
 – “Bird’s-eye”
 – Layout

• Route knowledge
 – Point A to Point B

Survey knowledge

Propositional representations

• More parsimonious: A-centered
 – C is 6 mi east of A
 – B is 4 mi south of A
 – D is 6 mi east and 4 mi S of A

• Less parsimonious (but more direct):
 – A is 6 mi W of C
 – C is 6 mi E of A
 – A is 4 mi N of B
 – B is 4 mi S of A
 – B is 45, 6W of C
 – C is 4N, 6E of B
 – A-D
 – D-A, B-D, D-B, C-D, D-C
Survey knowledge

Survey from route?

- Maybe
 - If fairly regular roads (Philly)
 - If irregular, no luck (Rochester)

- Routes: probably learning multiple views

- Goal-dependent (Taylor, Naylor, & Chechile, 1999)
 - Want to learn route, or layout?

Spatial hierarchies

- Superordinate: Nevada is east of California
- Subordinate: BUT Reno isn’t east of LA

Propositional that complements analog?

<table>
<thead>
<tr>
<th>a</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>b</td>
</tr>
</tbody>
</table>

Subordinate: E/W
Superordinate: E/W
Faster to judge

Dual representation

- Kosslyn (1987)
 - LH: categorical (inside, above)
 - RH: metric, spatial
Visual imagery

• Navigating your room in dark
 – Did you visualize?

• Is visual imagery necessary, or epiphenomenal?
 – (It happens but isn’t the knowledge itself)

Do we “need” imagery?

• Selective interference (Segal & Fusella, 1970)
 – Visually image an object (tree), OR
 – Auditorily image a sound (typewriter)
 – Monitor for
 • Weak visual (blue arrow) AND
 • Weak auditory (harmonica)
 – Worse when imaging than not imaging
 – Worse when imaging in same modality
 • Sound-image competes (interferes) with sound,
 • Visual-image with actual image!

Do we “need” imagery?

• Mental rotation (Shepard & Metzler ’71)
 – Compare two shapes at different orientations: same or different shape?
 – Linear relation between angular distance and RT
 – Objection: # of eye movements back & forth determine RT
 (Just & Carpenter ’76)
 – But still holds with sequential presentation
 • Can’t look at both at once (Shepard & colleagues)

Do we “need” imagery?

• Laeng & Tedorescu (2002)
 – Eye movements when looking at picture of object
 similar to eye movements when imaging that object

Do we “need” imagery?

• Kosslyn: map-scanning experiments
 – Scanning an image = scanning real map
 – Procedure:
 • Learn (fictitious) map (tree, pond, well, grass…)
 • Then, image map
 – Focus on the tree
 – Now imagine black speck moving from there to pond
 – (Sometimes no pond; measure time when there is)
 – Longer distance = longer scan time!

Imagery = Perception?

• One argument: No, imagery is already some sort of abstracted representation.
 – The imaged object can’t be reinterpreted
 • Chambers & Reisberg (1985): bunny-duck
 – Yes, you can reinterpret mental images
 • Finke, Pinker, & Farah (1989)
 – Imagine D rotated left 90° and put atop a J
Imagery = Perception?

- One argument: No, imagery is already some sort of abstracted representation.
 - The imaged object can't be reinterpreted (Chambers)
 - Yes, you can (Finke, Pinker, & Farah)

- Yes, you can (Finke, Pinker, & Farah)
 - Peterson et al. (1992): difference in *attention*
 - Reinterpreting a feature (J-curve-handle), or
 - Reinterpreting reference frame (front of duck =back of rabbit)
 - BOTH types of reversal occur

- Mast & Kosslyn (2002): better mental-rotators show effect more

Are visual images really visual?

- What if you can't see?
 - Kerr (1983): map-scanning in congenitally blind subjects
 - Teach layout on a board (raised objects)
 - Focus on named object
 - Imagine raised dot moving to 2nd object
 - Increase in response time with distance!
 - Representation of space isn't necessarily visual

- Farah: brain damage evidence
 - Visual deficits correlate w/ imagery deficits
 - Image H or T, then detect H or T
 - Facilitated only by identical letter
 - Matching effects found in ERP over visual cortex
 - Roland & Friberg (1985)
 - PET shows visual cortex activation for visual images but not auditory, & vice versa for A-V

Visual memory
Visual details

- This part isn’t as good as we might think.
 - What color is your front door?
 - [recall vs recognition]
 - Drawing familiar coins
 - Nickerson & Adams (1979): American penny
 - Omits over 50% of features
 - Less than half picked correct from a line-up
 - Jones (1990): # sides on British coins

Visual details

- Change blindness (Simons & Levin '98)
 - Stop a pedestrian, ask for directions
 - DOOR!
 - New person: keeps asking for directions
 - Did you notice a change? Only 50% did!
 - Factors
 - Relevant to task? (penny vs. button)
 - Category change? (age, social category)
 - And yet...
Visual details

• Not so great.
• But what about more large-scale information?

Picture memory

• Uncannily good.
• Shepard (1967)
 – Look at 612 pictures (6s each)
 – Then show in 2AFC task: 97% correct!!
 • After 3 days: 92%
 • After 4 months: 58%
 – Not clear how they’re doing it
 • Could be remembering unusual detail(s)

• Standing (1973)
 – <=10,000 pictures, 5 sec each
 – 2AFC
 – 83% correct

Picture memory

• Uncannily good.
• Shepard (1967)
• Standing (1973)
 • Koustaal & Schacter (1997): age effects
 – YES/NO task
 – Several objects from same category
 – Young adults: 81% yes, 35% FA
 – Older adults: 83% yes, 70% FA

Picture memory

• Picture-superiority effect:
 • PIC1 PIC2 PIC3 better remembered than if shown word list SHELL CAT TREE
 • Why?
 – Paivio (1971) dual coding hypothesis
 • Verbal code (kinda like propositional)
 • Imaginal code (kinda like analog)
 • Pictures have both, words have only one

• Paivio (1971) dual coding hypothesis
 – Verbal code (kinda like propositional)
 – Imaginal code (kinda like analog)
 – Pictures have both, words have only one

• Alternative hypothesis: context differences
 Words have particularly poor contextual information, while pictures have good context info.
Picture memory

- Propositional probably isn’t enough.
- Better to store in analog form, even if we can’t get quite all the details.

What about other kinds of analog memory?

Auditory memory

- "Abstractionist" accounts of word memory
 - You store only the information relevant to recognizing words.
 - i.e., no information about
 - Talker’s voice
 - How fast it was spoken
 - How talker felt (emotion, health)
 - Background noise
 - Conceptually similar to propositional storage
 - You might store other stuff, but "elsewhere."
 - If the "other stuff" influences memory (e.g., recognition), it has to come in from the outside.

Auditory memory

 - Are word representations “abstract”?
 - Presented words from different talkers
 - People were faster to shadow same-voice reps
 - Also spontaneously imitated the talker

Auditory memory

- Pisoni & colleagues: variability & language learning
 - English r/l for native Japanese speakers
 - Two kinds of auditory specificity important:
 - Where in the word it occurs (initial vs. final)
 - Variability in talkers
 - Affects both perception and production!

Auditory memory

- Speech isn’t stored in abstract form.
- Music may not be, either.
 - People: recognize Happy Birthday in any key *(relative pitch)*
 - *Note: animals aren’t good at this
 - Do we “throw away” pitch information?
• Levitin (1994): production
 – Sing a couple of your favorite songs
 – (Pop songs, not happy birthday)
 • You always hear them at the same pitch level
 – Pitch produced was quite close to pitch of original song (absolute pitch)
 – Similar results for rhythm

• Schellenberg & Trehub (2003), Psych Sci: perception
 – Played familiar theme songs (ER, X-Files, Simpsons)
 – Shifted slightly ± in pitch
 – 2AFC

• Schellenberg, Iverson, & McKinnon (1999): more perception
 – Songs can be recognized from 200 ms excerpt (even 100 ms)
 – Used five “Top 100” songs
 – Match excerpt to each of 5 songs
 • Guessing: 5x4x3x2x1 = 120 combinations
 • At 200 ms: 18/20 listeners above chance

• Not abstract–analog representations more plausible
• Temporal information is important
 – (May also be important for visual memory, even though we didn’t discuss this)