Representing space

What we see

- Two dimensions
- Monocular depth cues
- Binocular depth cues

What we "see"

- 3D structure
- Not exactly like what we see at a given instant
- Visual imagery?
- Something more succinct?

Possible types of representations

- Analog
 - Preserves properties of thing it represents
 - (Thing it represents: the "referent")
 - "To scale"
 - Often, idea is that representation duplicates the perceptual experience itself

Possible types of representations

- Propositions
 - $-\,\mathrm{A}$ is north of B
 - B is south of C
 - Modality-independent
 - Not visual or spatial
 - Could also represent "A is a nice city to visit"

Propositional representations

- More parsimonious: Acentered
 - C is 6 mi east of A
 - B is 4 mi south of A
- · Less parsimonious (but more direct):
 - A is 6 mi W of C
 - C is 6 mi E of A - A is 4 mi N of B
 - B is 4 mi S of A
 - B is 4S, 6W of C
 - C is 4N, 6E of B
- What if we add new city D?

- More parsimonious: Acentered
 - C is 6 mi east of A
 - B is 4 mi south of A
 - D is 6 mi east and 4 mi S
- · Less parsimonious (but
- more direct):

Propositional representations

- A is 6 mi W of C - C is 6 mi E of A
- $-\,$ A is 4 mi N of B
- B is 4 mi S of A - B is 4S, 6W of C
- C is 4N, 6E of B

Propositional representations

- More parsimonious: Acentered
 - C is 6 mi east of A
 - B is 4 mi south of A
 - D is 6 mi east and 4 mi S of A

- · Less parsimonious (but more direct):
 - A is 6 mi W of C
 - C is 6 mi E of A
 - A is 4 mi N of B
 - B is 4 mi S of A
 - B is 4S, 6W of C
 - C is 4N, 6E of B
 - A-D
 - D-A, B-D, D-B, C-D, D-C

Maps & Navigation

- · Survey knowledge
 - "Bird's-eye"
 - Layout
- · Route knowledge
 - Point A to Point B

Survey knowledge

Survey knowledge

Survey knowledge

Survey from route?

- Maybe
 - If fairly regular roads (Philly)
 - If irregular, no luck (Rochester)
- Routes: probably learning multiple views
- Goal-dependent (Taylor, Naylor, & Chechile, 1999)
 - Want to learn route, or layout?

Spatial hierarchies

- Superordinate: Nevada is east of California
- Subordinate: BUT Reno isn't east of LA

Spatial hierarchies

Stevens & Coupe (1978):

- Learn map; then "Is x east of y?"

Subordinate: E/W Superordinate: E/W

Faster to judge

Propositional that complements analog?

Slower to judge

Dual representation

- Kosslyn (1987)
 - LH: categorical (inside, above)
 - RH: metric, spatial

Visual imagery

- · Navigating your room in dark
 - Did you visualize?
- Is visual imagery necessary, or epiphenomenal?
 - (It happens but isn't the knowledge itself)

Do we "need" imagery?

- Selective interference (Segal & Fusella, 1970)
 - Visually image an object (tree), OR
 - Auditorily image a sound (typewriter)
 - Monitor for
 - Weak visual (blue arrow) AND
 - Weak auditory (harmonica)
 - Worse when imaging than not imaging
 - Worse when imaging in same modality
 - Sound-image competes (interferes) with sound,
 - Visual-image with actual image!

Do we "need" imagery?

- Mental rotation (Shepard & Metzler '71)
 - Compare two shapes at different orientations: same or different shape?
 - Linear relation between angular distance and RT
 - Objection: # of eye movements back & forth determine RT (Just & Carpenter '76)
 - But still holds with sequential presentation
 - Can't look at both at once (Shepard & colleagues)

Do we "need" imagery?

- · Kosslyn: map-scanning experiments
 - Scanning an image ≈ scanning real map
 - Procedure:
 - Learn (fictitious) map (tree, pond, well, grass...)
 - Then, image map
 - Focus on the tree
 - Now imagine black speck moving from there to pond
 - $\boldsymbol{\mathsf{-}}$ (Sometimes no pond; measure time when there is)
 - Longer distance = longer scan time!

Do we "need" imagery?

- Laeng & Tedorescu (2002)
 - Eye movements when looking at picture of object similar to eye movements when imaging that object

Imagery = Perception?

- One argument: No, imagery is already some sort of abstracted representation.
 - The imaged object can't be reinterpreted
 - Chambers & Reisberg (1985): bunny-duck
 - Yes, you can reinterpret mental images
 - Finke, Pinker, & Farah (1989)
 - Imagine D rotated left 90° and put atop a J

Imagery = Perception?

- · One argument: No, imagery is already some sort of abstracted representation.
 - The imaged object can't be reinterpreted (Chambers)
 - Yes, you can (Finke, Pinker, & Farah)

Imagery = Perception?

- One argument: No, imagery is already some sort of abstracted representation.
 - The imaged object can't be reinterpreted (Chambers)
 - Yes, you can (Finke, Pinker, & Farah)
 - Peterson et al. (1992): difference in attention

 - Reinterpreting a feature (J-curve=handle), or
 Reinterpreting reference frame (front of duck =back of rabbit)
 - BOTH types of reversal occur

Imagery = Perception?

- One argument: No, imagery is already some sort of abstracted representation.
 - The imaged object can't be reinterpreted (Chambers)
 - Yes, you can (Finke, Pinker, & Farah)
 - Peterson et al. (1992): difference in attention

 - Reinterpreting a feature (J-curve=handle), or
 Reinterpreting reference frame (front of duck =back of rabbit)
 - BOTH types of reversal occur
 - Mast & Kosslyn (2002): better mental-rotators show effect more

Are visual images really visual?

- What if you can't see?
 - Kerr (1983): map-scanning in congenitally blind subjects
 - Teach layout on a board (raised objects)
 - · Focus on named object
 - · Imagine raised dot moving to 2nd object
 - Increase in response time with distance!
 - Representation of space isn't necessarily visual

Are visual images really visual?

- Farah: brain damage evidence
 - Visual deficits correlate w/ imagery deficits
 - Image H or T, then detect H or T
 - Facilitated only by identical letter
 - · Matching effects found in ERP over visual cortex
- Roland & Friberg (1985)
 - PET shows visual cortex activation for visual images but not auditory, & vice versa for A-V

Visual memory

Visual details

- This part isn't as good as we might think.
 - What color is your front door?
 - [recall vs recognition]
 - Drawing familiar coins
 - Nickerson & Adams (1979): American penny
 - Omitted over 50% of features

 Less than half picked correct from a line-up
 - Jones (1990): # sides on British coins

Visual details

- Change blindness (Simons & Levin '98)
 - Stop a pedestrian, ask for directions
 - DOOR!
 - New person: keeps asking for directions
 - Did you notice a change? Only 50% did!

 - did!

 Factors

 Relevant to task? (penny vs. button)

 Category change? (age, social category)

 And yet...

Visual details

- Not so great.
- But what about more large-scale information?

Picture memory

- · Uncannily good.
- Shepard (1967)
 - Look at **612** pictures (6s each)
 - Then show in 2AFC task: 97% correct!!
 - After 3 days: 92%
 - After 4 months: 58%
 - Not clear how they're doing it
 - Could be remembering unusual detail[s]

Picture memory

- · Uncannily good.
- Shepard (1967)
- Standing (1973)
 - -<=10,000 pictures, 5 sec each</pre>
 - 2AFC
 - 83% correct

Picture memory

- · Uncannily good.
- Shepard (1967)
- Standing (1973)
- Koustaal & Schacter (1997): age effects
 - YES/NO task
 - Several objects from same category
 - Young adults: 81% yes, 35% FA
 - Older adults: 83% yes, 70% FA

Picture memory

- Picture-superiority effect:
- PIC1 PIC2 PIC3 better remembered than if shown word list SHELL CAT TREE
- Why?
 - Paivio (1971) dual coding hypothesis
 - Verbal code (kinda like propositional)
 - Imaginal code (kinda like analog)
 - Pictures have both, words have only one

Picture memory

- · Paivio (1971) dual coding hypothesis
 - Verbal code (kinda like propositional)
 - Imaginal code (kinda like analog)
 - Pictures have both, words have only one
- Alternative hypothesis: context differences
 Words have particularly poor contextual
 information, while pictures have good context
 info.

Picture memory

- Propositional probably isn't enough.
- Better to store in analog form, even if we can't get quite all the details.

What about other kinds of analog memory?

Auditory memory

- · "Abstractionist" accounts of word memory
 - You store only the information relevant to recognizing words.
 - I.e., no information about
 - Talker's voiceHow fast it was spoken

 - How talker felt (emotion, health)
 - Background noise
 - Conceptually similar to propositional storage
 - You might store other stuff, but "elsewhere."
 - If the "other stuff" influences memory (e.g. recognition), it has to come in from the outside.

Auditory memory

- · Goldinger (1998): talker-specific priming
 - Are word representations "abstract"?
 - Presented words from different talkers
 - People were faster to shadow same-voice reps
 - Also spontaneously imitated the talker

Auditory memory

- Pisoni & colleagues: variability & language learning
 - English r/l for native Japanese speakers
 - Two kinds of auditory specificity important:
 - Where in the word it occurs (initial vs. final)
 - · Variability in talkers
 - Affects both *perception* and *production*!

Auditory memory

- · Speech isn't stored in abstract form.
- Music may not be, either.
 - People: recognize Happy Birthday in any key (relative pitch)
 - *Note: animals aren't good at this
 - Do we "throw away" pitch information?

Auditory memory

- Levitin (1994): production
 - Sing a couple of your favorite songs
 - (Pop songs, not happy birthday)
 - You always hear them at the same pitch level
 - Pitch produced was quite close to pitch of original song (absolute pitch)
 - Similar results for rhythm

Auditory memory

- Schellenberg & Trehub (2003), Psyc Sci: perception
 - Played familiar theme songs (ER, X-Files, Simpsons)
 - Shifted slightly ± in pitch
 - 2AFC

Auditory memory

- Schellenberg, Iverson, & McKinnon (1999): more perception
 - Songs can be recognized from 200 ms excerpt (even 100 ms)
 - Used five "Top 100" songs
 - Match excerpt to each of 5 songs
 - Guessing: 5x4x3x2x1 = 120 combinations
 - At 200 ms: 18/20 listeners above chance

Auditory memory

- Not abstract--analog representations more plausible
- Temporal information is important
 - (May also be important for visual memory, even though we didn't discuss this)