
Types of Memory

Review Session Wednesday, 5/14 at 5:00 in PCYNH 106 This will **not** be on Midterm 2. (It **will** be on the final.)

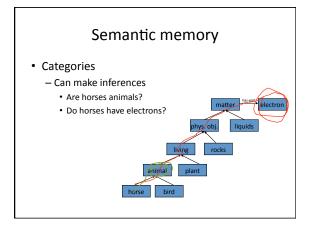
Distinctions in memory

• (And by memory, here, we mean long-term memory)

Distinctions in memory

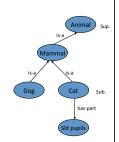
Episodic and Semantic

- Knowledge you can state
- Episodic: particular events
 - H.s. graduation dinner
 - Text message you received last night
- Semantic: general information
 - What typically constitutes a dinner
 - What a dog is like (category information)

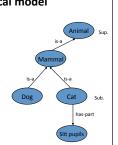

Semantic memory

- Categories, event schemas
- Concepts that are related activate each other (e.g. Meyer & Schvaneveldt 1971)
 - Lexical decision task
 - Prime is related or unrelated word

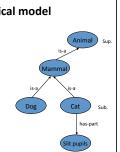
frang	fish
lamp	shoss
cup	bowl


Semantic memory

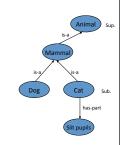
- Categories, event schemas
- Concepts that are related activate each other (e.g. Meyer & Schvaneveldt 1971)
 - Lexical decision task
 - Prime is related or unrelated word
 - Fish->lamp (LD to lamp is normal)
 - Cup->bowl (LD to bowl is faster/"facilitated")


Semantic memory

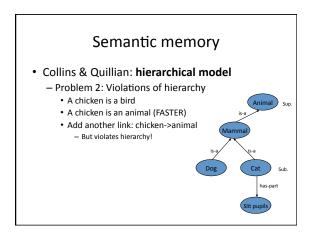
- Collins & Quillian: hierarchical model
 - Nodes (bird, fish, animal)
 - Concepts, not word-forms
 - Links
 - Labeled
 - Directed
 - Activation tags

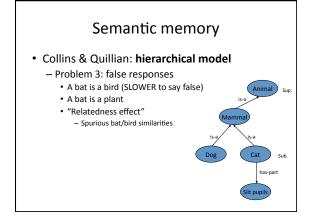

Semantic memory

- Collins & Quillian: hierarchical model
 - Nodes
 - Links
 - Activation tags


Semantic memory

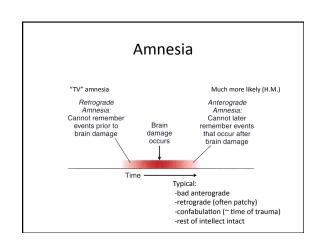
- Collins & Quillian: hierarchical model
 - Nodes
 - Links
 - Activation tags
 - Superordinate/subordinate




Semantic memory

- · Collins & Quillian: hierarchical model
 - Nodes
 - Links
 - Activation tags
 - Superordinate/subordinate
 - Sentence verification
 - A cat has slit pupils. (faster)
 - A cat is an animal. (slower)

Semantic memory • Collins & Quillian: hierarchical model — Problem 1: typicality effect • A penguin is a bird • A robin is a bird (FASTER) • Ok, stronger link for robin Dog Gat Sub. has-part Slit pupils

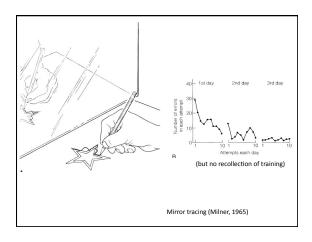


Episodic memory

- · Lots of details
- Temporally specific
 - Remember things in the order they happen
- Memory for source
- Truth determined by individual
 - Not by group consensus, like what "table" refers to

Episodic memory

- Separate from semantic?
- Evidence from amnesia



Amnesia

- · Anterograde: H.M.
 - Surgery for temporal lobe epilepsy: 1953
 - IQ: normal (better than pre-op)
 - Died in 2008; lab at UCSD sectioned and preserved his brain http://thebrainobservatory.ucsd.edu/hm

Amnesia

- Anterograde: H.M.
 - Memory after surgery
 - Couldn't learn new people, events
 - Few new facts
 - Couldn't improve on maze-solving task, find house
 - Could draw detailed floor plan of post-surgery house
 - Few new words since 1950's
 - Preserved: procedural learning

Retrograde amnesia

- · Korsakoff's syndrome
 - Usu. due to long-term alcoholism
 - Severe anterograde (no new memories)
 - Some retrograde
 - Seems to have temporal gradient
 - TV shows
 - Famous people
 - Famous events
 - Prob with gradient: alcohol causes anterograde

Retrograde amnesia

- · Korsakoff's syndrome
 - P.Z. (Butters & Czernak, 1984)
 - Onset at 65; famous scientist
 - Tested memory of his own autobiography
 - Facts: temporal gradient
 - Events: temporal gradient
 - Supports temporal gradient
 - Suggests episodic and semantic not separate
 - · Both affected by syndrome

Episodic/Semantic

- Amnesia research doesn't support distinction
 - Definitely memory for episodes, but
 - Anterograde: Hard to teach new semantic knowledge
 - Also, if episodes add up to semantics, you can't knock out one without the other

Distinctions in memory Long-term Memory Declarative Procedural Memory Memory Episodic Memory Semantic Memory

Procedural/Declarative

- Declarative: knowing that
 - Last night you had cheesy poofs for dinner
 - Cheesy poofs are not a good dinner
- · Procedural: knowing how
 - How do you open a bag of cheesy poofs?
 - Hard to verbalize, easy to act out
 - Skills: driving, reading, bow-hunting
 - H.M. could do it--separate

Implicit/Explicit

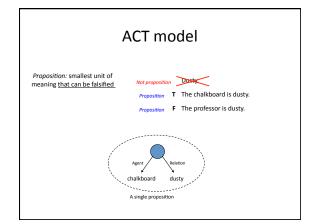
- Explicit: conscious awareness
 - You know that you know
 - Recall
 - Recognition
- Implicit: no conscious awareness
 - You don't know you know (may think you're guessing)
 - Stem completion (gar____)
 - Read rapidly-flashed word
 - Type of repetition priming
 - Previous exposure affects subsequent processing

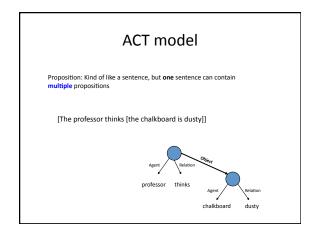
Implicit/Explicit

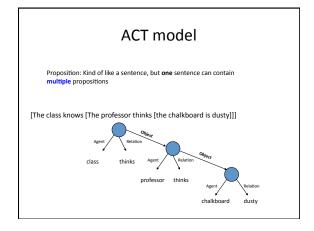
- Jacoby & Dallas (1981)
 - Present list of 60 words
 - Process meaning, rhyme, letters (depth)
 - Test: 80 words
 - Recognize presented words
 - ID with brief appearance (35-ms)--80% vs. 65%
 - - Nope--recognition (explicit) showed depth of processing effects, ID didn't (implicit)

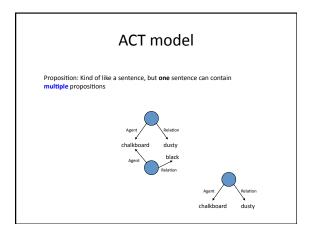
Implicit/Explicit

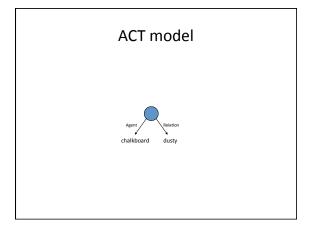
- Some manipulations affect implicit but not explicit:
 - Change to physical characteristics
- · Even opposite effects (Jacoby, 1983)
 - Antonym task
- Exp. Imp.
- Hot-___ (generate) 78
- .07
- Hot-COLD (context) .72 - COLD (no context) .56 22
 - .16

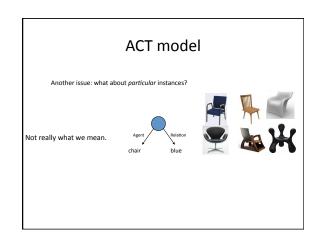

Implicit/Explicit

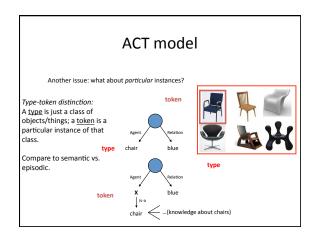

- Criticisms
 - Ratcliff & McKoon: not different type of memory, but bias
 - Normal stem completion: "absent" ... ABS___
 - Tricky stem completion: "absent" ... ABST
 - Not absent, but close
 - Stem completion is slower if exposed to "absent"
 - Roediger: task demands aren't equated
 - · Explicit: driven by concepts
 - Implicit: driven by data/perception

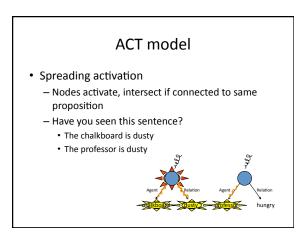

Models of memory

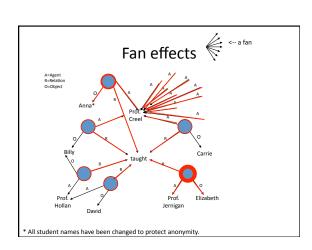

Adaptive Control of Thought


- "ACT" theory (John R. Anderson, '76, '83, '91)
- Extension of hierarchical model
 - But better!
- Attempts to explain
 - Learning
 - Memory
 - Language
 - Reasoning
 - Problem solving









ACT model

- · The evidence
 - Getting the "gist"
 - Jim told Ed about the fun exam
 - = Jim and Ed talked about the fun test
 - ≠ Jim told Ed about the bad exam
 - Nurse primes doctor
 - Fan effects

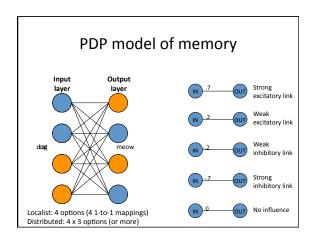
So the more facts you know, the harder it is to access one.
But aren't we faster to recall more about what we know a lot about?
If based on *plausibility*, more facts leads to **faster** response.

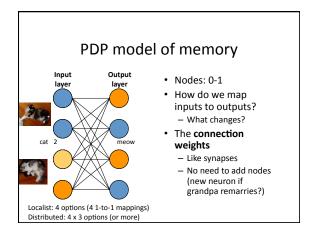
Fan effects & plausibility • Reder & Ross (1983) — Learn facts with different fan sizes — Then test either • Strict recognition or • Plausibility "Recognize?" In the strict recognition or • Plausibility "Recognize?" In the strict recognize?" Faster with more facts when judging plausibility Faster with more facts when judging plausibility

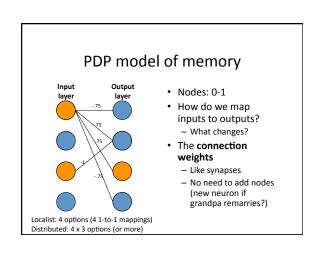
One more model...

Parallel Distributed Processing (PDP)

- E.g. McClelland & Rumelhart (1986)
- · Very different approach than ACT
 - Representations
 - Localist (ACT) vs. distributed (PDP)
 - Combines episodic and semantic
 - Episodes "add up to" semantics
 - Brain-inspired
 - Nodes and links (≈ neurons & their connections)


Parallel Distributed Processing (PDP)


- Localist (ACT) vs. distributed (PDP) representations: why?
 - "grandmother cell"
 - Store many patterns in one network


Parallel Distributed Processing (PDP)

- Combining episodic and semantic
 - Episodes "add up to" semantics
 - Multiple encodings of same/similar events strengthen memory, form a generalization (semantic memory)
 - Embodies idea that all remembering occurs in the context of every other memory
 - Remembering is being given partial information and "filling in" the rest (pattern completion)

